Abstract

We have used molecular dynamics and Monte Carlo methods to simulate the structure and phase stability of a Pd crystal in thermodynamic equilibrium with molecular hydrogen gas at temperature T and pressure $$ P_{g}^{H2} $$. The pressure–composition–temperature (PCT) curves were deduced under the extreme conditions of an open system (Pd crystal in equilibrium with a large-volume H2 gas reservoir) and a closed system (Pd crystal in equilibrium with H2 gas reservoir of infinitesimal volume). The PCT curves from the open simulations reproduce the experimental observations, including the ubiquitous hysteresis. The PCT curves from the closed-system simulations are continuous curves. Below a tri-critical point, the Pd–H system decomposes into two coherent phases. We find excellent agreement between the present simulation results and the predictions of the Schwarz–Khachaturyan theory for the decomposition of a Pd–H alloy into two coherent hydride phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.