Abstract

We show that an arbitrary body or aggregate can be made perfectly absorbing at discrete frequencies if a precise amount of dissipation is added under specific conditions of coherent monochromatic illumination. This effect arises from the interaction of optical absorption and wave interference and corresponds to moving a zero of the elastic S matrix onto the real wave vector axis. It is thus the time-reversed process of lasing at threshold. The effect is demonstrated in a simple Si slab geometry illuminated in the 500-900 nm range. Coherent perfect absorbers act as linear, absorptive interferometers, which may be useful as detectors, transducers, and switches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.