Abstract

As the wavelength resource in mainstream wavelength-division multiple-access (WDMA) systems becomes exhausted, and the bit-rate limitation within a single wavelength bandwidth is reached, alternative approaches to implementing a high-capacity optical fiber network need to be investigated. Coherent optical code-division multiple-access (OCDMA) systems, that can access many users simultaneously and asynchronously (or synchronously) across the single wavelength and same timeslot via spread spectrum techniques, are one alternative. In the longer term, the advantages of OCDMA in tandem with WDMA (OCDMA/WDMA) networks are compelling and worthy of further investigation in the goal of realising an extensive, flexible, high throughput and easily managed optical telecommunication infrastructure. In this paper, coherent OCDMA systems are introduced, and the issues of the system implementation within high-capacity optical fiber networks are discussed. A performance comparison between OCDMA and OTDMA systems is then carried out, both of them using narrow pulse laser sources. An optical fiber network utilizing coherent OCDMA techniques as one layer of a multiplexing hierarchy, in tandem with WDMA, is illustrated and a possible hybrid OCDMA/WDMA network architecture (and its performances and advantages) is described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call