Abstract

The coherent exciton-light coupling in pulse propagation experiments on the A-exciton resonance in bulk CdSe is investigated over a broad intensity range. At low light intensities, polariton propagation beats due to interference between excited states on both polariton branches are observed. In an intermediate intensity regime, the temporal polariton beating is suppressed in consequence of exciton-exciton interaction. At the highest light intensities, self-induced transmission and multiple pulse breakup are identified as a signature for carrier density Rabi flopping. Exciton-phonon scattering is shown to gradually eliminate coherent nonlinear propagation effects due to enhanced dephasing of the excitonic polarization. Calculations using the semiconductor Maxwell-Bloch equations are in qualitative agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call