Abstract

Looking for objects within complex natural environments is a task everybody performs multiple times each day. In this study, we explore how the brain uses the typical composition of real-world environments to efficiently solve this task. We recorded fMRI activity while participants performed two different categorization tasks on natural scenes. In the object task, they indicated whether the scene contained a person or a car, while in the scene task, they indicated whether the scene depicted an urban or a rural environment. Critically, each scene was presented in an “intact” way, preserving its coherent structure, or in a “jumbled” way, with information swapped across quadrants. In both tasks, participants’ categorization was more accurate and faster for intact scenes. These behavioral benefits were accompanied by stronger responses to intact than to jumbled scenes across high-level visual cortex. To track the amount of object information in visual cortex, we correlated multi-voxel response patterns during the two categorization tasks with response patterns evoked by people and cars in isolation. We found that object information in object- and body-selective cortex was enhanced when the object was embedded in an intact, rather than a jumbled scene. However, this enhancement was only found in the object task: When participants instead categorized the scenes, object information did not differ between intact and jumbled scenes. Together, these results indicate that coherent scene structure facilitates the extraction of object information in a task-dependent way, suggesting that interactions between the object and scene processing pathways adaptively support behavioral goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call