Abstract

Forecast of the heat and chemical budgets of lakes, rivers and oceans requires improved predictive understanding of air-water interfacial transfer coefficients. Here we present laboratory observations of the coherent motions that occupy the air-water interface at wind speeds (U10) 1.1 to 8.9 m/s. Spatio-temporal near-surface velocity data and interfacial renewal data are made available by a novel flow tracer method. The relative activity, velocity scales and time scales of the various coherent interfacial motions are measured, namely for Langmuir circulations, streamwise streaks, non-breaking wind waves, parasitic capillary waves, non-turbulent breaking wind waves, and turbulence-generating breaking wind waves. Breaking waves exhibit a sudden jump in streamwise interfacial velocity wherein the velocity jumps up to exceed the wave celerity and destroys nearby parasitic capillary waves. Four distinct hydrodynamic regimes are found to exist between U10 = 0 and 8.9 m/s, each with a unique population balance of the various coherent motions. The velocity scales, time scales and population balance of the different coherent motions are input to a first-principles gas transfer model to explain the waterside transfer coefficient (kw) as well as experimental patterns of temperature and gas concentration. The model mixes concepts from surface renewal and divergence theories, and requires surface divergence strength (β), the Lagrangian residence time inside the upwelling zone (tLu), and the total lifetime of new interface before it is downwelled (tLT). The model's output agrees with time-averaged measurements kw, patterns of temperature in infrared photographs, and spatial patterns of gas concentration and kw from direct numerical simulations. Several non-dimensional parameters, e.g. βtLu and τstLT where τs is the interfacial shear rate, determine the effectiveness of a particular type of coherent motion for affecting kw. This article is protected by copyright. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.