Abstract

In wall turbulence, it is widely accepted that the coherent motions determine the essential features of turbulent transport phenomena. In the present study, we have refined a trajectory-based detection algorithm for coherent motions and have investigated the relationship between coherent motions and scalar (heat) transfer from a structural point of view, i. e. trajectory analysis of the VITA heat transfer events, extraction of key flow modules and the relevant heat transport, and the prediction of passive scalar transfer by means of an autoregressive (AR) model. As a result, it is shown that the phase relationship of fluctuating velocity components dominates the essential characteristics of the transport processes of heat and momentum in wall turbulence and there exist distinct differences in individual correspondence between the coherent motions and heat transport processes, neither of which can be revealed by the widely used VITA technique. Also, the AR model is shown to provide good time-series predictions for turbulent heat transfer associated with coherent structures near the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.