Abstract

Thermally activated Brownian motion of interstitial defects is one of the factors driving the evolution of microstructure of crystalline metals under irradiation. In the limit of relatively small system size the motion of defects can be followed on the atomistic scale by using molecular dynamics. However, understanding the kinetics of evolution of microstructure requires investigating how defects migrate and interact on a scale which is substantially greater than that accessible to molecular dynamics. This paper shows how mobile interstitial defects can be described by quasiparticle solutions of the multistring Frenkel–Kontorova (MSFK) model, which prove the equivalence between the crowdion and the glissile dislocation loop representations of small interstitial clusters. An exact solution of the MSFK model is found for the case of an infinite straight edge dislocation. This solution illustrates the fundamental link between the concepts of a crowdion and a dislocation in a crystalline material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.