Abstract

Entanglement-based technologies, such as quantum information processing, quantum simulations and quantum-enhanced metrology, have the potential to revolutionize our way of computing and measuring, and help clarify the puzzling concept of entanglement itself. Ultracold atoms on atom chips are attractive for their implementation, as they provide control over quantum systems in compact, robust and scalable set-ups. An important tool in this system is a potential depending on the internal atomic state. Coherent dynamics in such a potential combined with collisional interactions enables entanglement generation both for individual atoms and ensembles. Here, we demonstrate coherent manipulation of Bose-condensed atoms in a state-dependent potential, generated with microwave near-fields on an atom chip. We reversibly entangle atomic internal and motional states, realizing a trapped-atom interferometer with internal-state labelling. Our system provides control over collisions in mesoscopic condensates, paving the way to on-chip generation of many-particle entanglement and quantum-enhanced metrology with spin-squeezed states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.