Abstract

Coherent interferometric imaging is based on the backpropagation of local spacetime cross-correlations of array data and was introduced in order to improve images when the medium between the array and the object to be imaged is inhomogeneous and unknown (Borcea et al 2005 Inverse Problems 21 1419). Although this method has been shown to be effective and is well founded theoretically, the coherent interferometric imaging function is computationally expensive and therefore difficult to use. In this paper, we show that this function is equivalent to a windowed beamformer energy function, that is, a quadratic function that involves only time gating and time delaying signals in emission and in reception. In this form the coherent interferometric imaging can be implemented efficiently both in hardware and software, that is, at a computational cost that is comparable to the usual beamforming and migration imaging methods. We also revisit the trade-off between enhanced image stability and loss of resolution in coherent interferometry from the point of view of its equivalence to a windowed beamformer energy imaging function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call