Abstract

This paper is concerned with the development of imaging methods to localize sources or reflectors in inhomogeneous moving media with acoustic waves that have travelled through them. A typical example is the localization of broadband acoustic sources in a turbulent jet flow for aeroacoustic applications. The proposed algorithms are extensions of Kirchhoff migration (KM) and coherent interferometry (CINT) which have been considered for smooth and randomly inhomogeneous quiescent media so far. They are constructed starting from the linearized Euler equations for the acoustic perturbations about a stationary ambient flow. A model problem for the propagation of acoustic waves generated by a fixed point source in an ambient flow with constant velocity is addressed. Based on this result imaging functions are proposed to modify the existing KM and CINT functions to account for the ambient flow velocity. They are subsequently tested and compared by numerical simulations in various configurations, including a synthetic turbulent jet representative of the main features encountered in actual jet flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.