Abstract

The basolateral amygdala (BLA) mediates the facilitating effects of emotions on memory. The BLA's enhancing influence extends to various types of memories, including striatal-dependent habit formation. To shed light on the underlying mechanisms, we carried out unit and local field potential (LFP) recordings in BLA, striatum, auditory cortex and intralaminar thalamus in cats trained on a stimulus-response task in which the presentation of one of two tones predicted reward delivery. The coherence of BLA, but not of cortical or thalamic, LFPs was highest with striatal gamma activity, and intra-BLA muscimol infusions selectively reduced striatal gamma power. Moreover, coupling of BLA-striatal unit activity increased when LFP gamma power was augmented. Early in training, the rewarded and unrewarded tones elicited a modest increase in coherent BLA-striatal gamma. As learning progressed, this gamma coupling selectively increased in relation to the rewarded tone. Thus, coherent gamma oscillations coordinate amygdalostriatal interactions during learning and might facilitate synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.