Abstract

Generating narrowband, continuous wave FIR/THz light via difference frequency generation (DFG) remains challenging due to material absorption and dispersion from optical phonons. The relatively new platform of thin film lithium niobate enables high-confinement nonlinear waveguides, reducing device size and potentially improving efficiency. We simulated surface-emitting DFG from 10 to 100 THz in a thin film lithium niobate waveguide with fixed poling period, demonstrating reasonable efficiency and bandwidth. Furthermore, adjusting wavelength and relative phase in an array of these waveguides enables beam steering along two directions. Continuous wave FIR/THz light can be efficiently generated and steered using these integrated devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.