Abstract

Dendritic molecules demonstrate a broad variety of transfer processes under different geometric and coupling regimes, which can be utilized in photovoltaic applications. Coherent energy and charge transfer processes were investigated in different oligothiophene dendritic systems functionalized with diketopyrrolopyrrole (DPP) groups in solution and in the solid-phase. For the first time, high-resolution time-resolved spectroscopy and interferometric microscopy techniques have been compared to investigate ultrafast coherent dynamics. Investigation of coherent dynamics in photovoltaic organic materials is important as related to longer exciton diffusion length in organic macromolecules. Differences in the excited state coherent dynamics have been found in films compared to the solution phase. Interestingly, the dendron structure has shown higher charge delocalization in the solid-phase compared to the dendrimer system due to stronger intra- and inter-molecular couplings occurring in dendrons. These findings ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.