Abstract

The coherent control of the orbital state is crucial for realizing the extremely-low power manipulation of the color centers in diamonds. Herein, a neutrally-charged nitrogen-vacancy center, NV0, is proposed as an ideal system for orbital control using electric fields. The electric susceptibility in the ground state of NV0 is estimated, and found to be comparable to that in the excited state of NV−. Also, the coherent control of the orbital states of NV0 is demonstrated. The required power for orbital control is three orders of magnitude smaller than that for spin control, highlighting the potential for interfacing a superconducting qubit operated in a dilution refrigerator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call