Abstract
Synchronization is a widespread phenomenon observed in physical, biological, and social networks, which persists even under the influence of strong noise. Previous research on oscillators subject to common noise has shown that noise can actually facilitate synchronization, as correlations in the dynamics can be inherited from the noise itself. However, in many spatially distributed networks, such as the mammalian circadian system, the noise that different oscillators experience can be effectively uncorrelated. Here, we show that uncorrelated noise can in fact enhance synchronization when the oscillators are coupled. Strikingly, our analysis also shows that uncorrelated noise can be more effective than common noise in enhancing synchronization. We first establish these results theoretically for phase and phase-amplitude oscillators subject to either or both additive and multiplicative noise. We then confirm the predictions through experiments on coupled electrochemical oscillators. Our findings suggest that uncorrelated noise can promote rather than inhibit coherence in natural systems and that the same effect can be harnessed in engineered systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.