Abstract
With present-day technology, spins in semiconductor quantum dots can be created, coherently manipulated, and measured. The ability of controlling spins in semiconductor nanostructures has new and exciting applications in electronics and information processing, including quantum computing and quantum communication. We give an overview over some of the theoretical work motivated by the potential use of electron spins in quantum dots as qubits for quantum information processing. Quantum gate mechanisms in laterally and vertically tunnel-coupled quantum dots and methods for single-spin manipulation and measurements are presented. Entanglement acts as a fundamental resource for many known quantum information processing schemes. We discuss recently proposed schemes to detect the entanglement of electrons in normal and superconducting wires via transport and noise measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.