Abstract

The average signal spectrum (periodogram) for coherent Doppler lidar is calculated for a turbulent wind field. Simple approximations are compared with the exact calculation. The effects of random errors in the zero velocity reference, the effects of averaging spectral estimates by use of multiple lidar pulses, and the effects of the range dependence of the lidar signal power over the range gate are included. For high spatial resolution measurements the lidar signal power is concentrated around one spectral estimate (spectral bin), and correct interpretation of the contribution from turbulence is difficult because of the effects of spectral leakage. For range gates that are larger than the lidar pulse volume, the signal power is contained in many spectral bins and the effects of turbulence can be determined accurately for constant signal power over the range gate and for the far-field range dependence of the signal power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.