Abstract
The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.