Abstract

The relative contributions of the anharmonicity of the lattice potential and the nonequilibrium concentration of charge carriers to the time dependence of the coherent A1g phonon frequency in bismuth excited by high-energy ultrashort laser pulses are studied by the coherent control method. The contributions are separated by the pump-probe method in which excitation is performed by two pulses with a controlled time delay. It is shown that, depending on the relative delay between the pump pulses, both correlation and anticorrelation between the amplitude and the initial frequency of oscillations are observed while the chirp and the initial frequency of the coherent phonon are anticorrelated. In addition, it has been found that the contributions of the lattice and the electronic subsystem are always anticorrelated. Therefore, a certain phase can be assigned to an electronic excitation and it may be suggested that the time dependence of the phonon frequency is determined not only by instantaneous values of the lattice and electronic response but also by the phase relations between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.