Abstract
The simplification of the pump-probe spectrum of excitons by pure-phase-polarization pulse shaping is investigated by a simulation study. The state of light is manipulated by varying the phases of two perpendicular polarization components of the pump, holding its total spectral and temporal intensity profiles fixed. Genetic and iterative Fourier transform algorithms are used to search for pulse phase functions that optimize the ratio of the signal at two frequencies. New features are extracted from the congested pump-probe spectrum of a helical pentamer by selecting a combination of Liouville space pathways. Tensor components which dominate the optimized spectra are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.