Abstract

This paper investigates the propagation dynamics of laser beams within a semiconductor quantum well (QW) system. The study explores various scenarios involving different detuning values and spatially varying incident beams. The light–matter interaction within the QW system shows a complex interplay between detuning, spatial characteristics, and beam properties. In the resonant case, where the detuning values for probe and signal beams are zero, we observe exponential relaxation of both beams reaching a common value. Introducing detuning leads to oscillatory behaviors, with larger detuning values promoting more pronounced oscillations and an enhanced signal beam. The investigation takes an intriguing turn when we consider position-dependent incident beams. In these cases, the spatial patterns of the initial beam are transferred to the generated beam, leading to soliton-like propagation and the creation of beams with specific spatial dependencies. Remarkably, under substantial detuning, both incident and generated beams adopt periodic patterns in two dimensions, forming lattice structures with spot-like peak intensities. These findings underscore the versatility and controllability of the QW system, offering opportunities for engineered spatial and spectral properties in laser beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call