Abstract

We predict and theoretically investigate the unique possibility to control distribution of ultrafast local optical fields in nanosystems in space with nanometer resolution and in time on the femtosecond scale. While the spatial degrees of freedom of the optical radiation do not allow focusing of the light on nanoscale, the temporal degrees of freedom, i.e., phases of excitation femtosecond pulses, are quite efficient functional degrees of freedom that permit one to coherently control the distribution of the energy of local fields, concentrating it at a desired location at certain times. Possible applications of this effect include energy supply and control of ultrafast optical computations in nanostructures, local optical probing of nanosystems, including nanosensors of chemical and biological agents, and nanomodification of surfaces (nano-lithography).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call