Abstract

We use data from the COHERENT CsI[Na] scintillation detector to constrain sub-GeV leptophobic dark matter models. This detector was built to observe low-energy nuclear recoils from coherent elastic neutrino-nucleus scattering. These capabilities enable searches for dark matter particles produced at the Spallation Neutron Source mediated by a vector portal particle with masses between 2 and 400 MeV/c2. No evidence for dark matter is observed and a limit on the mediator coupling to quarks is placed. This constraint improves upon previous results by two orders of magnitude. This newly explored parameter space probes the region where the dark matter relic abundance is explained by leptophobic dark matter when the mediator mass is roughly twice the dark matter mass. COHERENT sets the best constraint on leptophobic dark matter at these masses.Received 26 May 2022Accepted 30 August 2022DOI:https://doi.org/10.1103/PhysRevD.106.052004Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasParticle dark matterParticles & Fields

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call