Abstract
In this paper we have calculated the conductance of a periodic quantum dot attached to metallic leads, within the tight-binding (TB) model and in the ballistic regime. We have calculated the Green's function (GF), density of states (DOS) and the coherent transmission coefficient (TC) fully analytically for an alternating quantum dot (A-QD). The quasi-gap, bound states energies, the energy and dot-size dependence of the GF and conductance for the system are also derived. Finally, we show analytically the conductance can be switched between insulating (OFF) and conducting (ON) states by applying a gate voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.