Abstract

Polarons are prevalent in condensed matter systems with strong electron-phonon coupling. The adiabaticity of the polaron relates to its transport properties and spatial extent. To date, only adiabatic small polaron formation has been measured following photoexcitation. The lattice reorganization energy is large enough that the first electron-optical phonon scattering event creates a small polaron without requiring substantial carrier thermalization. We measure that frustrating the iron-centered octahedra in the rare-earth orthoferrite ErFeO3 leads to antiadiabatic polaron formation. Coherent charge hopping between neighboring Fe3+─Fe2+ sites is measured with transient extreme ultraviolet spectroscopy and lasts several picoseconds before the polaron forms. The resulting small polaron formation time is an order of magnitude longer than previous measurements and indicates a shallow potential well, even in the excited state. The results emphasize the importance of considering dynamic electron-electron correlations, not just electron-phonon-induced lattice changes, for small polarons for transport, catalysis, and photoexcited applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.