Abstract

In this paper, during dopant analysis of silicon devices, we have observed a phenomenon generally neglected in EDX analysis: the coherent Bremsstrahlung (CB). We discussed the reason why and came to the conclusion that the analytical TEM used for these experiments presents a configuration and performances, which makes this equipment very sensitive to the CB effect. This is due to large collection solid angle and high counting rate of the four silicon drift EDX detectors (SDD), a high brightness electron source providing large probe current and moreover a geometry favorable to on axis crystal observations. We analyzed silicon devices containing Si [110] and Si [100] crystal areas at different energies (80-120-200keV). We also observed relaxed SiGe (27 and 40at% of Ge). The CB effect, whose intensity is maximum near zone axis beam alignment, manifests as characteristic broad peaks present in the X-ray spectrum background. The peak energies are predicted by a simple formula deduced for the CB models found in the literature and that we present simply. We evaluate also the CB peak intensities and discuss the importance of this effect on the detection and quantification traces of impurities. The CB peaks also give information on the analyzed crystal structure (measurement of the periodicity along the zone axis) and allow, in every particular experiment or system, to determine the median take off angle of the EDX detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call