Abstract
The frequency interval (141 THz) that exists between 1064 nm radiation and the unusual semiconductor wavelength of 709 nm has been coherently divided by using an optical phase-locked loop to control a slave laser lying at the mean frequency of these two wavelengths. The 709 nm radiation has been generated by a combination of wavelength tuning in an extended cavity and temperature tuning of a ridge-waveguide semiconductor laser with a nominal wavelength of 728 nm. Two nonlinear processes have been used to produce the coherent division: the sum frequency mixing of 1064 and 709 nm radiation to produce 425 nm radiation and the second harmonic generation of 851 nm light to produce the same wavelength radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.