Abstract
Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K+. However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K+ are bound to unfolded proteins. The A-state is the higher-entropy state because water and K+ are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev’s native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.
Highlights
Among physicists there have always been people who are interested in basic physical approaches to the phenomena of life
[17] could not find its place in Membrane (pump) theory (MT) because, according to MT, the media on both sides of the plasma membrane do not differ in entropy
MT has been the greatest obstacle to the spread of physical ideas and methods in cell physiology
Summary
Among physicists there have always been people who are interested in basic physical approaches to the phenomena of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.