Abstract

In this paper, we report a coherent beam combining (CBC) system that involves two thulium-doped all-polarization maintaining (PM) fiber chirped pulse amplifiers. Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent (SPGD) algorithm, a maximum average power of 265 W is obtained, with a CBC efficiency of 81% and a residual phase error of λ/17. After de-chirping by a pair of diffraction gratings, the duration of the combined laser pulse is compressed to 690 fs. Taking into account the compression efficiency of 90% and the main peak energy proportion of 91%, the corresponding peak power is calculated to be 4 MW. The laser noise characteristics before and after CBC are examined, and the results indicate that the CBC would degrade the low frequency relative intensity noise (RIN), of which the integration is 1.74% in [100 Hz, 2 MHz] at the maximum combined output power. In addition, the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated, showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.