Abstract

We consider the problem of backscattering of light by a layer of discrete random medium illuminated by an obliquely incident plane electromagnetic wave. The multiply scattered reflected radiation is assumed to consist of incoherent and coherent parts, the coherent part being caused by the interference of multiply scattered waves. Formulas describing the characteristics of the reflected radiation are derived assuming that the scattering particles are spherical. The formula for the incoherent contribution reproduces the standard vector radiative transfer equation. The interference contribution is expressed in terms of a system of Fredholm integral equations with kernels containing Bessel functions. The special case of the backscattering direction is considered in detail. It is shown that the angular width of the backscattering interference peak depends on the polar angle of the incident wave and on the azimuth angle of the reflection direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.