Abstract
Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) has been developed for spatially and temporally resolved simultaneous measurement of temperature and mole fraction of most major species in ethylene-air flames. This paper describes a method to infer coherent anti-Stokes Raman spectroscopy complex susceptibility distributions of the ν3 band of ethylene from WIDECARS spectra measured in heated mixtures of ethylene and air, and to use such distributions to fit experimental WIDECARS spectra in an ethylene-air flame. The method is used to measure mole fraction ethylene in a dual-mode supersonic combustor burning premixed ethylene and air with single-laser-shot precision (one standard deviation) of ±0.0025 (absolute).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.