Abstract
The study of the mechanisms that control the ultrafast dynamics in gold nanoparticles is gaining more attention, as these nanomaterials can be used to create nanoarchitectures with outstanding optical properties. Here pump-probe and two-dimensional electronic spectroscopy have been synergistically employed to investigate the early ultrafast femtosecond processes following photoexcitation in colloidal gold nanorods with low aspect ratio. Complementary insights into the coherent plasmonic dynamics at the femtosecond time scale and incoherent hot electron dynamics over picosecond time scales have been obtained, including important information on the different sensitivity to the pump fluence of the longitudinal and transverse plasmons and their different contributions to the photoinduced broadening and shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The journal of physical chemistry letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.