Abstract

We investigate the coherent and incoherent nonparaxial Weber beams, theoretically and numerically. We show that the superposition of coherent self-accelerating Weber beams with transverse displacement cannot display the nonparaxial accelerating Talbot effect. The reason is that their lobes do not accelerate in unison, which is a requirement for the appearance of the effect. While for the incoherent Weber beams, they naturally cannot display the accelerating Talbot effect but can display the nonparaxial accelerating properties, although the transverse coherence length is smaller than the beam width, based on the second-order coherence theory. Our research method directly applies to the nonparaxial Mathieu beams as well, and one will obtain similar conclusions as for the Weber beams, although this is not discussed in the paper. Our investigation identifies families of nonparaxial accelerating beams that do not exhibit the accelerating Talbot effect, and in addition broadens the understanding of coherence properties of such nonparaxial accelerating beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call