Abstract

The dynamics of cyclic systems with four equivalent potential minima is studied here from two different points of view. The solution of the time-dependent Schrödinger equation provides insight into the coherent wave packet motion. The resulting reaction mechanism involves relocalization between opposite, not neighboring potential minima. The inclusion of an environment within a density matrix description leads to dissipation and therefore to a transition from coherent to incoherent dynamics. The theoretical considerations are applied to a simple model of the cyclic motion of a proton in a molecular framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.