Abstract

In the previous reports (in: G.M. Nielson, D. Silver (Eds.), Proceedings of the IEEE Visualization ’95, IEEE Computer Society Press, Los Alamitos, CA, ’95, pp. 151–8; IEEE Transactions on Visualization and Computer Graphics 2 (2) (1996) 144–55; in: H. Hagen, G.M. Nielson, F. Post (Eds.), Proceedings of the Dagstuhl ’97 Scientific Visualization, IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 65–78), solid fitting has been presented as a generalized indirect volume visualization method, which relies primarily on a simple, but powerful geometric volume model, termed interval volume, to allow one to represent a 3D sub-volume for which the associated scalar values lie within a specified closed interval. The field interval-based specification of volumetric regions of interest has various advantages to play a complementary role with isosurfacing and direct volume rendering. This paper presents a new concept, termed coherence-sensitive solid fitting, which uses a global measure of volumetric coherence to estimate the spatial/temporal complexities of interval volume to be extracted, and adaptively controls the shape and retinal properties of interval volume to realize an interactive and effective volume exploration environment. Experiments with many well-known testbed datasets and an attractive simulation dataset from CFD research are performed to prove the feasibility of the present concept empirically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.