Abstract

In this paper we present coherence-controlled holographic microscopy (CCHM) and various examples of observations of living cells including combination of CCHM with fluorescence microscopy. CCHM is a novel technique of quantitative phase imaging (QPI). It is based on grating off-axis interferometer, which is fully adapted for the use of incoherent illumination. This enables high-quality QPI free from speckles and parasitic interferences and lateral resolution of classical widefield microscopes. Label-free nature of QPI makes CCHM a useful tool for long-term observations of living cells. Moreover, coherence-gating effect induced by the use of incoherent illumination enables QPI of cells even in scattering media. Combination of CCHM with common imaging techniques brings the possibility to exploit advantages of QPI while simultaneously identifying the observed structures or processes by well-established imaging methods. We used CCHM for investigation of general parameters of cell life cycles and for research of cells reactions to different treatment. Cells were also visualized in 3D collagen gel with the use of CCHM. It was found that both the cell activity and movement of the collagen fibers can be registered. The method of CCHM in combination with fluorescence microscopy was used in order to obtain complementary information about cell morphology and identify typical morphological changes associated with different types of cell death. This combination of CCHM with common imaging technique has a potential to provide new knowledge about various processes and simultaneously their confirmation by comparison with known imaging method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.