Abstract
We measure longitudinal dressed states of a superconducting qubit, the single Cooper-pair box, and an intense microwave field. The dressed states represent the hybridization of the qubit and photon degrees of freedom and appear as avoided level crossings in the combined energy diagram. By embedding the circuit in an rf oscillator, we directly probe the dressed states. We measure their dressed gap as a function of photon number and microwave amplitude, finding good agreement with theory. In addition, we extract the relaxation and dephasing rates of these states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.