Abstract

An analysis of transverse laser resonator modes is presented, based on a recently developed coherence theory in the space-frequency domain. The modes are introduced by means of solutions of an integral equation that expresses a steady-state condition for a second-order correlation function of the field across a mirror of the laser cavity. All solutions of this integral equation are found to be expressible as quadratic forms involving the Fox–Li modes of the conventional theory. If there is no degeneracy, each mode is shown to be necessarily completely spatially coherent, at each frequency, within the framework of second-order correlation theory. It is also shown that, if several transverse modes are excited, the output cannot be completely spatially coherent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call