Abstract

A striking discovery in the field of network science is that the majority of real networked systems have some universal structural properties. In general, they are simultaneously sparse, scale-free, small-world, and loopy. In this article, we investigate the second-order consensus of dynamic networks with such universal structures subject to white noise at vertices. We focus on the network coherence HSO characterized in terms of the H2 -norm of the vertex systems, which measures the mean deviation of vertex states from their average value. We first study numerically the coherence of some representative real-world networks. We find that their coherence HSO scales sublinearly with the vertex number N . We then study analytically HSO for a class of iteratively growing networks-pseudofractal scale-free webs (PSFWs), and obtain an exact solution to HSO, which also increases sublinearly in N , with an exponent much smaller than 1. To explain the reasons for this sublinear behavior, we finally study HSO for Sierpinśki gaskets, for which HSO grows superlinearly in N , with a power exponent much larger than 1. Sierpinśki gaskets have the same number of vertices and edges as the PSFWs but do not display the scale-free and small-world properties. We thus conclude that the scale-free, small-world, and loopy topologies are jointly responsible for the observed sublinear scaling of HSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.