Abstract
We study coherence resonance (CR) in the FitzHugh–Nagumo (FHN) neurons under cross-correlated sine-Wiener (CCSW) noises. It is numerically demonstrated that the reciprocal coefficient of variance of inter-spike intervals (R) increases with increasing amplitude or correlation time of CCSW noises, reaches the maximum at proper amplitude or correlation time, and then decreases, suggesting the appearance of CR phenomenon. In addition, the occurrence of CR is sensitive to a parameter range of amplitudes and correlation times of CCSW noises. Thus, CR can be controlled by regulating the amplitudes and correlation times of CCSW noises in the FHN excitable systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.