Abstract

We develop simple density-matrix models to describe the role of coherence in resonant-tunneling (RT) transport of quantum-cascade lasers (QCLs). Specifically, we investigate the effects of coherent coupling between the lasing levels with other levels on the transport properties and gain spectra. In the first part of the paper, we use a three-level density-matrix model to obtain useful analytical expressions for current transport through the injector barrier in a QCL. An expression for the slope discontinuity in the current-voltage characteristics at the lasing threshold is derived. This value is shown to be a direct measure of the population inversion at threshold and contradicts the previously held belief of it being indicative of ratio of the laser level lifetimes. In the second part of the paper, we use density matrices to compute the gain spectrum for a resonant-phonon terahertz QCL design. The large anticrossing of the doublet of lower radiative levels is reflected in a broad gain linewidth due to a coherent RT assisted depopulation process. At certain bias conditions, the gain spectrum exhibits double peaks which is supported by experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.