Abstract

Experiments relating to studies of the coherence of Bose condensates of dipolar excitons in GaAs/AlGaAs heterostructures with a wide, single quantum well and a Schottky gate are analyzed. Dipolar excitons were excited by light in an annular trap formed along the perimeter of a window in a metal gate with an applied electric voltage. A dual-beam interference technique involving interference combination of the amplitudes of the luminescence light field, together with subsequent analysis of first order correlators, is used to study the temporal (longitudinal) and spatial (transverse) coherence of the exciton condensates. It is found that the transverse coherence length of an exciton condensate is considerably longer than its thermal De Broglie wavelength. Experimental studies of the luminescence intensity correlator also confirm the coherence of the exciton Bose condensate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.