Abstract

We show that the Mobius function mu(n) is strongly asymptotically orthogonal to any polynomial nilsequence n -> F(g(n)L). Here, G is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup L (so G/L is a nilmanifold), g : Z -> G is a polynomial sequence and F: G/L -> R is a Lipschitz function. More precisely, we show that the inner product of mu(n) with F(g(n)L) over {1,...,N} is bounded by 1/log^A N, for all A > 0. In particular, this implies the Mobius and Nilsequence conjecture MN(s) from our earlier paper "Linear equations in primes" for every positive integer s. This is one of two major ingredients in our programme, outlined in that paper, to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection \psi_1,...,\psi_t : Z^d -> Z of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper on the distribution of polynomial orbits on nilmanifolds. We give some applications of our main theorem. We show, for example, that the Mobius function is uncorrelated with any bracket polynomial. We also obtain a result about the distribution of nilsequences n -> a^nxL as n ranges only over the primes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.