Abstract

We present the longitudinal coherence measurement of the transient inversion collisional x-ray laser for the first time. The Ni-like Pd x-ray laser at 14.68 nm is generated by the LLNL COMET laser facility and is operating in the gain-saturated regime. Interference fringes are produced using a Michelson interferometer setup in which a thin multilayer-coated membrane is used as a beam splitter. The longitudinal coherence length for the picosecond duration 4<i>d</i><sup>1</sup><i>S</i><sub>0</sub> -&gt; 4<i>p</i><sup>1</sup><i>P</i><sub>1</sub> lasing transition is determined to be ~400 µm (1/e HW) by adjusting the length of one interferometer arm and measuring the resultant variation in fringe visibility. This is four times improved coherence than previous measurements on quasi-steady state schemes largely as a result of the narrower line profile in the lower temperature plasma. The inferred gain-narrowed linewidth of ~0.29 pm is also substantially narrower than previous measurements on quasi-steady state x-ray laser schemes. This study shows that the coherence of the x-ray laser beam can be improved by changing the laser pumping conditions. The x-ray laser is operating at 4 - 5 times the transform-limited pulse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.