Abstract

We analyze the optically driven dynamics of a qubit implemented on a singlet-triplet subspace of two-electron states in a self-assembled quantum dot molecule. We study two possible control schemes based on the coupling to an excited (four-particle) state either by two spectrally separated laser pulses or by a single spectrally broad pulse. We quantitatively characterize the imperfections of the qubit operation resulting from non-adiabatic evolution and from limited spectral selectivity in a real system, as compared to the ideal adiabatic Raman transfer of occupation in the $\Lambda$-system. Next, we study the effects of decoherence induced by the coupling to the phonons of the surrounding crystal lattice and by radiative recombination. As a result, we are able to identify the optimization trade-offs between different sources of errors and indicate the most favorable conditions for quantum control of the singlet-triplet qubit in the two optical control schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call