Abstract

We introduce a model that explains the phenomenon of correlation-assisted tunneling and puts it in a broader context. This model assumes the existence of an effective force of pure quantum nature between nearby fragments of correlated matter that results due to interference effects. The magnitude of this force depends on the amount of coherence between different locations; it attains a maximum value for fragments in a perfect superfluid state and disappears entirely when the fragments are in the Mott Insulator state. The force can also be explained in terms of the Bohmian quantum potential. We illustrate the implications of this force on the transport of cold atoms through simple potential structures, the triple-well harmonic trap and optical lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.