Abstract
Coherence in the metal-metal-to-ligand-charge transfer (MMLCT) excited state of diplatinum molecule [Pt(ppy)(μ-(t)Bu(2)pz)](2) has been investigated through the observed oscillatory features and their corresponding frequencies as well as polarization dependence in the single-wavelength transient absorption (TA) anisotropy signals. Anticorrelated parallel and perpendicular TA signals with respect to the excitation polarization direction were captured, while minimal oscillatory features were observed in the magic angle TA signal. The combined analysis of the experimental results coupled with those previous calculated in the literature maps out a plausible excited state trajectory on the potential energy surface, suggesting that (1) the two energetically close MMLCT excited states due to the symmetry of the molecule may be electronically and coherently coupled with the charge density shifting back and forth between the two phenylpyridine (ppy) ligands, (2) the electronic coupling strength in the (1)MMLCT and (3)MMLCT states may be extracted from the oscillation frequencies of the TA signals to be 160 and 55 cm(-1), respectively, (3) a stepwise intersystem crossing cascades follows (1)MMLCT → (3)MMLCT (T(1b)) → (3)MMLCT (T(1a)), and (4) a possible electronic coherence can be modulated via the Pt-Pt σ-interactions over a picosecond and survive the first step of intersystem crossing. Future experiments are in progress to further investigate the origin of the oscillatory features. These experimental observations may have general implications in design of multimetal center complexes for photoactivated reactions where coherence in the excited states may facilitate directional charge or energy transfer along a certain direction between different parts of a molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.