Abstract

We study fully synchronized (coherent) states in complex networks of chaotic oscillators, reviewing the analytical approach of determining the stability conditions for synchronizability and comparing them with numerical criteria. As an example, we present detailed results for networks of chaotic logistic maps having three different scale-free topologies: random scale-free topology, deterministic pseudo-fractal scale-free network and Apollonian network. For random scale-free topology we find that the lower boundary of the synchronizability region scales approximately as $k^{-\mu}$, where $k$ is the outgoing connectivity and $\mu$ depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling is heterogeneous, namely when it is proportional to some power of the neighbor connectivity. In all cases, stability conditions are determined from the eigenvalue spectrum of the Laplacian matrix and agree well with numerical results based on histograms of coherent states in parameter space. Additionally, we show that almost everywhere in the synchronizability region the basin of attraction of coherent states fills the entire phase space, and that the transition to coherence is of first-order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.