Abstract

That superpositions of states can be useful for performing tasks in quantum systems has been known since the early days of quantum information, but only recently has quantitative theory of quantum coherence been proposed. Here we apply that theory to an analysis of the Deutsch-Jozsa algorithm, which depends on quantum coherence for its operation. The Deutsch-Jozsa algorithm solves a decision problem, and we focus on a probabilistic version of that problem, comparing probability of being correct for both classical and quantum procedures. In addition, we study a related decision problem in which the quantum procedure has one-sided error while the classical procedure has two-sided error. The role of coherence on the quantum success probabilities in both of these problems is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.